经济类高等数学考试大纲

网上有关“经济类高等数学考试大纲”话题很是火热,小编也是针对经济类高等数学考试大纲寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 推...

网上有关“经济类高等数学考试大纲”话题很是火热,小编也是针对经济类高等数学考试大纲寻找了一些与之相关的一些信息进行分析 ,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

推荐同济版,因为人大版的过于简单 ,即使是经济类考数三 ,也有时会不够用 。还有,有些原理人大版的都没有写推到步骤,很不清楚 ,只能强记。不利于复习,而同济虽然比较难,初时不易下手 ,但一遍过来,定有收获。

2010年全国硕士研究生入学统一考试数学考试大纲--数学三

考试科目:微积分.线性代数.概率论与数理统计

考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

二 、答题方式

答题方式为闭卷、笔试.

三、试卷内容结构

微积分 56%

线性代数 22%

概率论与数理统计 22%

四 、试卷题型结构

试卷题型结构为:

单项选择题选题 8小题 ,每题4分,共32分

填空题 6小题,每题4分 ,共24分

解答题(包括证明题) 9小题,共94分

微 积 分

一 、函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法 ,会建立应用问题的函数关系.

2.了解函数的有界性.单调性.周期性和奇偶性.

3.理解复合函数及分段函数的概念 ,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.了解数列极限和函数极限(包括左极限与右极限)的概念.

6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则 ,掌握利用两个重要极限求极限的方法.

7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.

8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性 、最大值和最小值定理.介值定理) ,并会应用这些性质.

二、一元函数微分学

考试内容

导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值

考试要求

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.

2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则 ,会求分段函数的导数 会求反函数与隐函数的导数.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性 ,会求函数的微分.

5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.

6.会用洛必达法则求极限.

7.掌握函数单调性的判别方法,了解函数极值的概念 ,掌握函数极值、最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间 内 ,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的) ,会求函数图形的拐点和渐近线.

9.会描述简单函数的图形.

三 、一元函数积分学

考试内容

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用

考试要求

1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.

2.了解定积分的概念和基本性质 ,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.

3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值 ,会利用定积分求解简单的经济应用问题.

4.了解反常积分的概念,会计算反常积分.

四、多元函数微积分学

考试内容

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分

考试要求

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念 ,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件 ,了解二元函数极值存在的充分条件 ,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值 ,并会解决简单的应用问题.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.

五 、无穷级数

考试内容

常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式

考试要求

1.了解级数的收敛与发散.收敛级数的和的概念.

2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件 ,掌握正项级数收敛性的比较判别法和比值判别法.

3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.

4.会求幂级数的收敛半径、收敛区间及收敛域.

5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.

6.了解 . . . 及 的麦克劳林(Maclaurin)展开式.

六 、常微分方程与差分方程

考试内容

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用

考试要求

1.了解微分方程及其阶、解、通解 、初始条件和特解等概念.

2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.

3.会解二阶常系数齐次线性微分方程.

4.了解线性微分方程解的性质及解的结构定理 ,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.

5.了解差分与差分方程及其通解与特解等概念.

6.了解一阶常系数线性差分方程的求解方法.

7.会用微分方程求解简单的经济应用问题.

线 性 代 数

一 、行列式

考试内容

行列式的概念和基本性质 行列式按行(列)展开定理

考试要求

1.了解行列式的概念,掌握行列式的性质.

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵

考试内容

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵 、对角矩阵、三角矩阵的定义及性质 ,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

2.掌握矩阵的线性运算 、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件 ,理解伴随矩阵的概念 ,会用伴随矩阵求逆矩阵.

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

5.了解分块矩阵的概念 ,掌握分块矩阵的运算法则.

三、向量

考试内容

向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法

考试要求

1.了解向量的概念,掌握向量的加法和数乘运算法则.

2.理解向量的线性组合与线性表示 、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.理解向量组的极大线性无关组的概念 ,会求向量组的极大线性无关组及秩.

4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.

5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四 、线性方程组

考试内容

线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解

考试要求

1.会用克莱姆法则解线性方程组.

2.掌握非齐次线性方程组有解和无解的判定方法.

3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

4.理解非齐次线性方程组解的结构及通解的概念.

5.掌握用初等行变换求解线性方程组的方法.

五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵

考试要求

1.理解矩阵的特征值 、特征向量的概念 ,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

2.理解矩阵相似的概念,掌握相似矩阵的性质 ,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.

3.掌握实对称矩阵的特征值和特征向量的性质.

六 、二次型

考试内容

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

考试要求

1.了解二次型的概念,会用矩阵形式表示二次型 ,了解合同变换与合同矩阵的概念.

2.了解二次型的秩的概念 ,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.

3.理解正定二次型.正定矩阵的概念 ,并掌握其判别法.

概率论与数理统计

一、随机事件和概率

考试内容

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.

2.理解概率 、条件概率的概念 ,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式 、全概率公式以及贝叶斯(Bayes)公式等.

3.理解事件的独立性的概念 ,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

二、随机变量及其分布

考试内容

随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

考试要求

1.理解随机变量的概念,理解分布函数

的概念及性质 ,会计算与随机变量相联系的事件的概率.

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布  、几何分布、超几何分布、泊松(Poisson)分布 及其应用.

3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.

4.理解连续型随机变量及其概率密度的概念 ,掌握均匀分布  、正态分布 、指数分布及其应用 ,其中参数为 的指数分布 的概率密度为

5.会求随机变量函数的分布.

三、多维随机变量及其分布

考试内容

多维随机变量及其分布函数 二维离散型随机变量的概率分布 、边缘分布和条件分布 二维连续型随机变量的概率密度 、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布

考试要求

1.理解多维随机变量的分布函数的概念和基本性质.

2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.

4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.

5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.

四、随机变量的数字特征

考试内容

随机变量的数学期望(均值) 、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差 、相关系数及其性质

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差 、矩、协方差、相关系数)的概念,会运用数字特征的基本性质 ,并掌握常用分布的数字特征.

2.会求随机变量函数的数学期望.

3.了解切比雪夫不等式.

五 、大数定律和中心极限定理

考试内容

切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列维—林德伯格(Levy-Lindberg)定理

考试要求

1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.

六 、数理统计的基本概念

考试内容

总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布

考试要求

1.了解总体 、简单随机样本、统计量、样本均值 、样本方差及样本矩的概念,其中样本方差定义为

2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布 、 分布和 分布得上侧 分位数 ,会查相应的数值表.

3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.

4.了解经验分布函数的概念和性质.

七、参数估计

考试内容

点估计的概念 估计量与估计值 矩估计法 最大似然估计法

考试要求

1.了解参数的点估计、估计量与估计值的概念.

2.掌握矩估计法(一阶矩 、二阶矩)和最大似然估计法.

以上是2010数三考纲,你对照着课本看就好了~~

关于“经济类高等数学考试大纲 ”这个话题的介绍,今天小编就给大家分享完了 ,如果对你有所帮助请保持对本站的关注!

本文来自作者[流年书柬]投稿,不代表商经验立场,如若转载,请注明出处:https://shjyhotel.com/zlan/202502-1014.html

(62)

文章推荐

  • 四川疫情最新消息成都/四川成都疫情况

    四川疫情分布在哪里1、四川疫情分布在成都、眉山、阿坝、内江、德阳等多地。根据查询相关公开信息显示,截止至2022年11月29日,四川新增省内感染者1291例,涉及成都、眉山、阿坝、内江、德阳等多地。2、四川新增的四例的本土确诊这些病例分别分布在了金牛区,成华区,锦江区和郫都区,这些都是属于中风险地

    2025年03月15日
    51
  • 【金饰价格,金饰价格飙到923元什么意思】

    现在万足金回收价多少钱一克?1、万足金的回收价格大约在395至400元人民币每克,而千足金的回收价格一般在390至395元人民币每克。万足金的质地比千足金更软,因此在制作工艺上的费用也更高,这导致了万足金在置换或购买时的成本通常高于足金和千足金。在购买黄金时,可以通过观察其色泽来判断纯度,通常纯度

    2025年03月24日
    37
  • 二手毛坯房App/二手毛坯房卖多少钱合适

    做二房东赚钱吗1、做二手房东确实可以盈利,但需要具备一定的启动资金和时间管理能力。对于二手房东而言,房源的选择至关重要,要留意市场供需情况,挑选位置优越、交通便利且配套设施齐全的房源,这样能吸引更多租客,提高出租率,从而增加收益。2、二房东只适合在一二线城市,因为一二线城市的房价高、租金高,利润差

    2025年03月25日
    42
  • 【江西的疫情最新情况,江西疫惰最新情况】

    2021江西疫情最新消息1、江西疫情最新消息截止2021年11月1日09:28,江西省全身现有本土确诊病例2例,31日报告新增本地确诊病例1例,无症状感染者4例,均与铅山突发疫情相关联。下面是编为大家带来的江西省各地级市疫情情况火如下:九江市疫情最新消息(1)10月30日,一名自铅山县来柴桑区

    2025年03月28日
    38
  • 【人寿保险怎么样,农业人寿保险怎么样】

    人寿保险怎么样?作为保险行业的领军企业,中国人寿凭借其强大的规模和实力,赢得了市场的广泛认可。如果您注重公司规模和品牌影响力,选择中国人寿无疑是一个明智的决策。倍领说保险愿为您提供更多专业、权威的保险测评与资讯。首先,倍领哥可以明确的告诉大家,人寿保险存款是可靠的!把钱存保险公司其实就是买一份储蓄

    2025年04月06日
    29
  • 斯柯达速派有新款吗(2021款斯柯达速派上市时间)

    斯柯达速派1.8T这款车什么样1、斯柯达速派8T是一款性价比较高的中型轿车,值得考虑购买。以下是具体评价:性价比高:斯柯达速派8T,特别是330TSI舒适版,相较于性能相近的大众迈腾330TSI舒适版,价格上便宜了2万元,具有较高的性价比。动力强劲且油耗低:8T版本动力表现优秀,同时油耗相对较低,

    2025年04月08日
    33
  • 暗黑二装备公式/暗黑2装备级别对照表

    求暗黑破坏神2暗月世界装备打孔及合成公式(中文版)1、任意未打孔的武器或盔甲加上解毒药水,可以在该物品上打孔。例如,任意未打孔的武器或盔甲加上三瓶解毒药水,可以打上三个孔。任意物品加上解毒药水和回城卷轴,可以得到该物品的normal形态。例如,一件magicarchonplate加上解毒药水

    2025年04月14日
    51
  • 国际金(国际金价今日黄金实时价格走势图)

    什么是国际金1、国际金是一种贵金属投资品种。国际金是一种以黄金为交易对象的投资方式,主要在全球范围内进行买卖。以下是详细解释:国际金的定义国际金是指投资者通过全球性的金融市场,买卖黄金现货和期货等金融产品,以此来获得投资收益或进行避险操作。这种投资方式具有较高的流动性和全球市场的关联性。2、国金

    2025年04月27日
    29
  • 草精灵技能机/草系精灵怎么对付

    拳皇wing1.2完整版出招表基础出招表近距离攻击:如直拳、横拳等,根据角色不同,攻击方式和威力也有所差异。跳跃攻击:通过跳跃发起攻击,可应对远距离敌人。特殊技能:各角色独有的技能,如投掷、反击等。必杀技:需要一定能量或连击数,威力强大的技能。-01-17拳皇wing2所有角色出招表5

    2025年05月25日
    1
  • 【2017年西安交大录取分数线是多少,西安交大2007录取分数线】

    西安交大录取分数线是多少?西安交通大学2023年录取分数线于近日公布,安徽地区的理科录取分数线为659分,位次1595;文科录取分数线为614分,位次659。而在广西,理科录取分数线定为656分,位次703,文科则为623分,位次539。黑龙江地区的理科录取分数线为637分,位次787,文科则为5

    2025年06月12日
    0

发表回复

本站作者后才能评论

评论列表(4条)

  • 流年书柬
    流年书柬 2025年02月17日

    我是商经验的签约作者“流年书柬”!

  • 流年书柬
    流年书柬 2025年02月17日

    希望本篇文章《经济类高等数学考试大纲》能对你有所帮助!

  • 流年书柬
    流年书柬 2025年02月17日

    本站[商经验]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 流年书柬
    流年书柬 2025年02月17日

    本文概览:网上有关“经济类高等数学考试大纲”话题很是火热,小编也是针对经济类高等数学考试大纲寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 推...

    联系我们

    邮件:商经验@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们